Package: phaseR (via r-universe)

October 22, 2024

Type Package

Title Phase Plane Analysis of One- And Two-Dimensional Autonomous ODE Systems

Version 2.2.1

Imports deSolve, graphics, grDevices, utils

Description Performs a qualitative analysis of one- and two-dimensional autonomous ordinary differential equation systems, using phase plane methods. Programs are available to identify and classify equilibrium points, plot the direction field, and plot trajectories for multiple initial conditions. In the one-dimensional case, a program is also available to plot the phase portrait. Whilst in the two-dimensional case, programs are additionally available to plot nullclines and stable/unstable manifolds of saddle points. Many example systems are provided for the user. For further details can be found in Grayling (2014) [<doi:10.32614/RJ-2014-023>](https://doi.org/10.32614/RJ-2014-023).

License MIT + file LICENSE

Suggests knitr, rmarkdown, testthat

Date 2022-08-30

URL <https://github.com/mjg211/phaseR>

BugReports <https://github.com/mjg211/phaseR/issues>

RoxygenNote 7.1.2

Encoding UTF-8

VignetteBuilder knitr

Repository https://mjg211.r-universe.dev

RemoteUrl https://github.com/mjg211/phaser

RemoteRef HEAD

RemoteSha bc6af8c7a7ebe8d6c1683c40a3b79d1f1066c4a4

Contents

Contents

Description

phaseR is an R package for the qualitative analysis of one- and two-dimensional autonomous ODE systems, using phase plane methods. Programs are available to identify and classify equilibrium points, plot the direction field, and plot trajectories for multiple initial conditions. In the one-dimensional case, a program is also available to plot the phase portrait. Whilst in the twodimensional case, additionally programs are available to plot nullclines and stable/unstable manifolds of saddle points. Many example systems are provided for the user.

Details

The package contains nine main functions for performing phase plane analyses:

- [drawManifolds](#page-4-1): Draws the stable and unstable manifolds of a saddle point in a two dimensional autonomous ODE system.
- [findEquilibrium](#page-22-1): Identifies a nearby equilibrium point of an autonomous ODE system based on a specified starting point.
- [flowField](#page-24-1): Plots the flow or velocity field of a one- or two-dimensional autonomous ODE system.
- [nullclines](#page-33-1): Plots the nullclines of a two-dimensional autonomous ODE system.
- [numericalSolution](#page-36-1): Numerically solves a two-dimensional autonomous ODE system in order to plot the two dependent variables against the independent variable.
- [phasePlaneAnalysis](#page-38-1): Provides a simple means of performing a phase plane analysis by typing only numbers in to the command line.
- [phasePortrait](#page-40-1): Plots the phase portrait of a one-dimensional autonomous ODE system, for use in classifying equilibria.
- [stability](#page-44-1): Performs stability, or perturbation, analysis in order to classify equilibria.
- [trajectory](#page-47-1): Numerically solves a one- or two-dimensional ODE system to plot trajectories in the phase plane.

In addition, the package contains over 25 derivative functions for example systems. Links to these can be found in the package index.

An accompanying vignette containing further information, examples, and exercises, can also be accessed with vignette("introduction", package = "phaseR").

This package makes use of the [ode](#page-0-0) function in the package [deSolve](#page-0-0).

Author(s)

Michael J Grayling (michael.grayling@ncl.ac.uk)

Contributors: Gerhard Burger, Tomas Capretto, Stepehn P Ellner, John M Guckenheimer

.paramDummy *A function such that we can apply DRY in param documentation*

Description

A function such that we can apply DRY in param documentation

Usage

```
.paramDummy(state.names)
```
Arguments

state.names The state names for [ode](#page-0-0) functions that do not use positional states.

competition *The species competition model*

Description

The derivative function of the species competition model, an example of a two-dimensional autonomous ODE system.

Usage

```
competition(t, y, parameters)
```


drawManifolds 5

Details

competition evaluates the derivative of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = r_1 x(K_1 - x - \alpha_{12} y)/K_1, \frac{dy}{dt} = r_2 y(K_2 - y - \alpha_{21} x)/K_2.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

drawManifolds *Stable and unstable manifolds*

Description

Plots the stable and unstable manifolds of a saddle point. A search procedure is utilised to identify an equilibrium point, and if it is a saddle then its manifolds are added to the plot.

Usage

```
drawManifolds(
  deriv,
  y0 = NULL,parameters = NULL,
  tstep = 0.1,
  tend = 100,
  col = c("green", "red"),add.legend = TRUE,
  state.names = c("x", "y"),
 method = "lsoda",
  ...
\mathcal{E}
```
Arguments

Value

Returns a [list](#page-0-0) with the following components:

example1 7

Author(s)

Michael J Grayling, Stephen P Ellner, John M Guckenheimer

example1 *Example ODE system 1*

Description

The derivative function of an example one-dimensional autonomous ODE system.

Usage

example1(t, y, parameters)

Arguments

Details

example1 evaluates the derivative of the following ODE at the point (t, y) :

$$
\frac{dy}{dt} = 4 - y^2.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the value of the derivative at (t, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

```
example10(t, y, parameters)
```
Arguments

Details

example10 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = -x + x^3, \frac{dy}{dt} = -2y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example11(t, y, parameters)

Arguments

Details

example11 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = x(3 - x - 2y), \frac{dy}{dt} = -y(2 - x - y).
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Examples

```
# Plot the velocity field, nullclines and several trajectories
example11_flowField <- flowField(example11,
                                 xlim = c(-5, 5),ylim = c(-5, 5),points = 21,
                                 add = FALSE)
```

```
y0 <- matrix(c(4, 4, -1, -1,
                                -2, 1, 1, -1), 4, 2,
                              byrow = TRUE)
example11_nullclines <- nullclines(example11,
                                  xlim = c(-5, 5),
                                  ylim = c(-5, 5),points = 200)
example11_trajectory <- trajectory(example11,
                                  y@ = y@,
                                  tlim = c(0, 10))
# Determine the stability of the equilibrium points
example11_stability_1 <- stability(example11, ystar = c(0, 0))
example11_stability_2 <- stability(example11, ystar = c(0, 2))
example11_stability_3 <- stability(example11, ystar = c(1, 1))
example11_stability_4 <- stability(example11, ystar = c(3, 0))
```
example12 *Example ODE system 12*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example12(t, y, parameters)

Arguments

Details

example12 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = x - y, \frac{dy}{dt} = x^2 + y^2 - 2.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

example13 11

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Examples

```
# Plot the velocity field, nullclines and several trajectories
example12_flowField <- flowField(example12,
                                xlim = c(-4, 4),
                                ylim = c(-4, 4),points = 17,
                                add = FALSE)y0 <- matrix(c(2, 2, -3, 0,
                                0, 2, 0, -3), 4, 2,
                              byrow = TRUE)
example12_nullclines <- nullclines(example12,
                                 xlim = c(-4, 4),ylim = c(-4, 4),points = 200)
example12_trajectory <- trajectory(example12,
                                 y0 = y0,
                                 tlim = c(0, 10)# Determine the stability of the equilibrium points
example12_stability_1 <- stability(example12,
                                 ystar = c(1, 1)example12_stability_2 <- stability(example12,
                                 ystar = c(-1, -1)
```
example13 *Example ODE system 13*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

```
example13(t, y, parameters)
```


Details

example13 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = 2 - x^2 - y^2, \frac{dy}{dt} = x^2 - y^2.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

example14 *Example ODE system 14*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

```
example14(t, y, parameters)
```
Arguments

Details

example14 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = x^2 - y - 10, \frac{dy}{dt} = -3x^2 + xy.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

example15 13

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

example15 *Example ODE system 15*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example15(t, y, parameters)

Arguments

Details

example15 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = x^2 - 3xy + 2x, \frac{dy}{dt} = x + y - 1.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Description

The derivative function of an example one-dimensional autonomous ODE system.

Usage

example2(t, y, parameters)

Arguments

Details

example2 evaluates the derivative of the following ODE at the point (t, y) :

$$
\frac{dy}{dt} = y(1-y)(2-y).
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the value of the derivative at (t, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Examples

```
# Plot the flow field and several trajectories
example2_flowField <- flowField(example2,
                                  xlim = c(0, 4),ylim = c(-1, 3),system = "one.dim",
                                 add = FALSE,
```
example3 15

```
xlab = "t")example2_trajectory <- trajectory(example2,<br>y0 =
                                           = c(-0.5, 0.5, 1.5, 2.5),tlim = c(\emptyset, 4),
                                     system = "one.dim")
# Plot the phase portrait
example2_phasePortrait <- phasePortrait(example2,
                                        ylim = c(-0.5, 2.5),
                                        frac = 0.5)
# Determine the stability of the equilibrium points
example2_stability_1 <- stability(example2,
                                    ystar = 0,
                                    system = "one.dim")
example2_stability_2 <- stability(example2,
                                    ystar = 1,
                                    system = "one.dim")
example2_stability_3 <- stability(example2,
                                    ystar = 2,
                                    system = "one.dim")
```
example3 *Example ODE system 3*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example3(t, y, parameters)

Arguments

Details

example3 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = -x, \frac{dy}{dt} = -4x.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

16 example4

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

example4 *Example ODE system 4*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example4(t, y, parameters)

Arguments

Details

example4 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = -x, \frac{dy}{dt} = 4x.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

 α example 5 17

See Also

[ode](#page-0-0)

Examples

```
# Plot the velocity field, nullclines and several trajectories
example4_flowField <- flowField(example4,
                               xlim = c(-3, 3),ylim = c(-5, 5),points = 19,
                              add = FALSE)y0 <- matrix(c(1, 0, -1, 0, 2, 2,
                              -2, 2, -3, -4), 5, 2,
                            byrow = TRUE)
example4_nullclines <- nullclines(example4,
                               xlim = c(-3, 3),ylim = c(-5, 5)example4_trajectory <- trajectory(example4,
                               y0 = y0,
                                tlim = c(0,10))
```
example5 *Example ODE system 5*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example5(t, y, parameters)

Arguments

Details

example5 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = 2x + y, \frac{dy}{dt} = 2x - y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Examples

```
# Plot the velocity field, nullclines, manifolds and several trajectories
example5_flowField <- flowField(example5,
                                     xlim = c(-3, 3),ylim = c(-3, 3),points = 19,
                                    add = FALSE)y0 <- matrix(c(1, 0, -1, 0, 2, 2,
                                   -2, 2, 0, 3, 0, -3), 6, 2,
                                 byrow = TRUE)
example5_nullclines <- nullclines(example5,
                                     xlim = c(-3, 3),ylim = c(-3, 3)example5_trajectory <- trajectory(example5,
                                     y0 = y0,
                                     tlim = c(0,10))
# Plot x and y against t
example5_numericalSolution <- numericalSolution(example5,
                                            y0 = c(0, 3),tlim = c(\emptyset, 3))
# Determine the stability of the equilibrium point
example5_stability <- stability(example5,
                                    ystar = c(0, 0)
```
example6 *Example ODE System 6*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example6(t, y, parameters)

example7 19

Arguments

Details

example6 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = x + 2y, \frac{dy}{dt} = -2x + y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

example7 *Example ODE system 7*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

```
example7(t, y, parameters)
```


Details

example7 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = -x - y, \frac{dy}{dt} = 4x + y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

example8 *Example ODE system 8*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example8(t, y, parameters)

Arguments

Details

example8 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = y, \frac{dy}{dt} = -x - y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

example9 21

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

example9 *Example ODE system 9*

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example9(t, y, parameters)

Arguments

Details

example9 evaluates the derivatives of the following coupled ODE system at the point (t, x, y) :

$$
\frac{dx}{dt} = -2x + 3y, \frac{dy}{dt} = 7x + 6y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Examples

```
# Plot the velocity field, nullclines and several trajectories
example9_flowField <- flowField(example9,
                               xlim = c(-3, 3),ylim = c(-3, 3),points = 19,
                               add = FALSE)y0 <- matrix(c(1, 0, -3, 2,
                              2, -2, -2, -2), 4, 2,
                            byrow = TRUE)
example9_nullclines <- nullclines(example9,
                               xlim = c(-3, 3),ylim = c(-3, 3)example9_trajectory <- trajectory(example9,
                                y0 = y0,
                                tlim = c(0, 10))
# Determine the stability of the equilibrium point
example9_stability <- stability(example9,
                              ystar = c(0, 0)
```


Description

The derivative function of the exponential growth model, an example of a one- dimensional autonomous ODE system.

Usage

```
exponential(t, y, parameters)
```


findEquilibrium 23

Details

exponential evaluates the derivative of the following ODE at the point (t, y) :

$$
\frac{dy}{dt} = \beta y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the value of the derivative at (t, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

findEquilibrium *Equilibrium point identification*

Description

Searches for an equilibium point of a system, taking the starting point of the search as a user specified location. On identifying such a point, a classification is performed, and an informatively shaped point can be added to the plot.

Usage

```
findEquilibrium(
  deriv,
  y0 = NULL,parameters = NULL,
  system = "two.dim",
  tol = 1e-16,
  max.iter = 50.
 h = 1e-06,
 plot.it = FALSE,
  summary = TRUE,
  state.names = if (system == "two.dim") c("x", "y") else "y"
)
```
Arguments

Value

Returns a list with the following components (the exact make up is dependent on the value of system):

flowField 25

Author(s)

Michael J Grayling, Stephen P Ellner, John M Guckenheimer

flowField *Flow field*

Description

Plots the flow or velocity field for a one- or two-dimensional autonomous ODE system.

Usage

```
flowField(
  deriv,
 xlim,
 ylim,
 parameters = NULL,
  system = "two.dim",
 points = 21,
  col = "gray",arrow.type = "equal",
  arrow.head = 0.05,
  frac = 1,
  add = TRUE,
  state.names = if (system == "two.dim") c("x", "y") else "y",
  xlab = if (system == "two.dim") state.names[1] else "t",
 ylab = if (system == "two.dim") state.names[2] else state.names[1],
  ...
\mathcal{L}
```


flowField 27

Value

Returns a [list](#page-0-0) with the following components (the exact make up is dependent on the value of system):

Author(s)

Michael J Grayling

See Also

[arrows](#page-0-0), [plot](#page-0-0)

Examples

```
# Plot the flow field, nullclines and several trajectories for the
# one-dimensional autonomous ODE system logistic
logistic_flowField <- flowField(logistic,
                             xlim = c(0, 5),
                             vlim = c(-1, 3),
                             parameters = c(1, 2),
                             points = 21,
                              system = "one.dim",add = FALSE)logistic_nullclines <- nullclines(logistic,
                               xlim = c(0, 5),
                              ylim = c(-1, 3),
                              parameters = c(1, 2),
                               system = "one.dim")
logistic_trajectory <- trajectory(logistic,
                              y0 = c(-0.5, 0.5, 1.5, 2.5),
                               tlim = c(0, 5),
                              parameters = c(1, 2),
                               system = "one.dim")
# Plot the velocity field, nullclines and several trajectories for the
# two-dimensional autonomous ODE system simplePendulum
simplePendulum_flowField <- flowField(simplePendulum,
                                   xlim = c(-7, 7),ylim = c(-7, 7),parameters = 5,
                                   points = 19,
                                   add = FALSE)y0 <- matrix(c(0, 1, 0, 4, -6, 1, 5, 0.5, 0, -3),
                                5, 2, byrow = TRUE)
simplePendulum_nullclines <- nullclines(simplePendulum,
                                    xlim = c(-7, 7),ylim = c(-7, 7),
                                    parameters = 5,
                                    points = 500simplePendulum_trajectory <- trajectory(simplePendulum,
                                    y\emptyset = y\emptyset,
                                    tlim = c(0, 10),
                                    parameters = 5)
```
lindemannMechanism *The Lindemann mechanism*

Description

The derivative function of the non-dimensional version of the Lindemann mechanism, an example of a two-dimensional autonomous ODE system.

logistic 29

Usage

lindemannMechanism(t, y, parameters)

Arguments

Details

lindemannMechanism evaluates the derivative of the following ODE at the point (t, x, y) :

$$
\frac{dx}{dt} = -x^2 + \alpha xy, \frac{dy}{dt} = x^2 - \alpha xy - y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

logistic *The logistic growth model*

Description

The derivative function of the logistic growth model, an example of a two-dimensional autonomous ODE system.

Usage

logistic(t, y, parameters)

Arguments

Details

logistic evaluates the derivative of the following ODE at the point (t, y) :

$$
\frac{dy}{dt} = \beta y (1 - y/K).
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the value of the derivative at (t, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Examples

```
# Plot the velocity field, nullclines and several trajectories
logistic_flowField <- flowField(logistic,
                               xlim = c(0, 5),
                               ylim = c(-1, 3),parameters = c(1, 2),
                               points = 21,
                               system = "one.dim",
                               add = FALSE)logistic_nullclines <- nullclines(logistic,
                                xlim = c(0, 5),ylim = c(-1, 3),
                                parameters = c(1, 2),
                                system = "one.dim")
logistic_trajectory <- trajectory(logistic,
                                y0 = c(-0.5, 0.5, 1.5, 2.5),
                                tlim = c(\emptyset, 5),
                                parameters = c(1, 2),
                                system = "one.dim")
```
Plot the phase portrait

lotkaVolterra 31

```
logistic_phasePortrait <- phasePortrait(logistic,
                                    ylim = c(-0.5, 2.5),parameters = c(1, 2),
                                    points = 10,
                                    frac = 0.5)
# Determine the stability of the equilibrium points
logistic_stability_1 <- stability(logistic,
                                ystar = 0,parameters = c(1, 2),
                                system = "one.dim")
logistic_stability_2 <- stability(logistic,
                                ystar = 2,
                                parameters = c(1, 2),
                                system = "one.dim")
```
lotkaVolterra *The Lotka-Volterra model*

Description

The derivative function of the Lotka-Volterra model, an example of a two-dimensional autonomous ODE system.

Usage

lotkaVolterra(t, y, parameters)

Arguments

Details

lotkaVolterra evaluates the derivative of the following ODE at the point (t, x, y) :

$$
\frac{dx}{dt} = \lambda x - \epsilon xy, \frac{dy}{dt} = \eta xy - \delta y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

monomolecular *The monomolecular growth model*

Description

The derivative function of the monomolecular growth model, an example of a one-dimensional autonomous ODE system.

Usage

monomolecular(t, y, parameters)

Arguments

Details

monomolecular evaluates the derivative of the following ODE at the point (t, y) :

$$
\frac{dy}{dt} = \beta(K - y).
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the value of the derivative at (t, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Description

The derivative function of the Morris-Lecar model, an example of a two-dimensional autonomous ODE system.

Usage

morrisLecar(t, y, parameters)

Arguments

Details

morrisLecar evaluates the derivative of the following ODE at the point (t, x, y) :

$$
\frac{dx}{dt} = 0.05(90 - 0.5g_{Ca}(1 + \tanh(x + 1.2)/18))(x - 120) - 8y(x + 84) - 2(x + 60),
$$

$$
\frac{dy}{dt} = \phi(0.5\left[1 + \tanh\left(\frac{x - 2}{30}\right)\right] - y)\cosh(\frac{x - 2}{60}).
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

nullclines *Nullclines*

Description

Plots nullclines for two-dimensional autonomous ODE systems. Can also be used to plot horizontal lines at equilibrium points for one-dimensional autonomous ODE systems.

Usage

```
nullclines(
 deriv,
 xlim,
 ylim,
 parameters = NULL,
  system = "two.dim",
 points = 101,
 col = c("blue", "cyan"),add = TRUE,add.legend = TRUE,
  state.names = if (system == "two.dim") c("x", "y") else "y",
  ...
\mathcal{L}
```


nullclines 35

Value

Returns a [list](#page-0-0) with the following components (the exact make up is dependent on the value of system):

In order to ensure a nullcline is plotted, set xlim and ylim strictly enclosing its location. For example, to ensure a nullcline is plotted along $x = 0$, set ylim to, e.g., begin at -1.

Author(s)

Michael J Grayling

See Also

[contour](#page-0-0), [plot](#page-0-0)

Examples

```
# Plot the flow field, nullclines and several trajectories for the
# one-dimensional autonomous ODE system logistic.
logistic_flowField <- flowField(logistic,
                             xlim = c(0, 5),ylim = c(-1, 3),
                             parameters = c(1, 2),
                             points = 21,
                             system = "one.dim",
                             add = FALSE)logistic_nullclines <- nullclines(logistic,
                              xlim = c(0, 5),
                              ylim = c(-1, 3),parameters = c(1, 2),
                              system = "one.dim")
logistic_trajectory <- trajectory(logistic,
                              y0 = c(-0.5, 0.5, 1.5, 2.5),
                              tlim = c(0, 5),
                              parameters = c(1, 2),
                              system = "one.dim")
# Plot the velocity field, nullclines and several trajectories for the
# two-dimensional autonomous ODE system simplePendulum.
simplePendulum_flowField <- flowField(simplePendulum,
                                  xlim = c(-7, 7),ylim = c(-7, 7),
                                  parameters = 5,
                                  points = 19,
                                  add = FALSE)y0 <- matrix(c(0, 1, 0, 4, -6, 1, 5, 0.5, 0, -3),
                                5, 2, byrow = TRUE)
simplePendulum_nullclines <- nullclines(simplePendulum,
                                   xlim = c(-7, 7),ylim = c(-7, 7),parameters = 5,
                                   points = 500
```
simplePendulum_trajectory <- trajectory(simplePendulum,

```
y\emptyset = y\emptyset,
tlim = c(0, 10),
parameters = 5)
```
numericalSolution *Numerical solution and plotting*

Description

Numerically solves a two-dimensional autonomous ODE system for a given initial condition, using [ode](#page-0-0) from the package [deSolve](#page-0-0). It then plots the dependent variables against the independent variable.

Usage

```
numericalSolution(
 deriv,
 y0 = NULL,tlim,
  tstep = 0.01,
  parameters = NULL,
  type = "one",col = c("red", "blue"),add.grid = TRUE,
  add.legend = TRUE,
  state.names = c("x", "y"),
 xlab = "t",
 ylab = state.names,
 method = "ode45",
  ...
)
```


Value

Returns a [list](#page-0-0) with the following components:

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0), [plot](#page-0-0)

phasePlaneAnalysis 39

Examples

```
# A two-dimensional autonomous ODE system, vanDerPol.
vanDerPol_numericalSolution <- numericalSolution(vanDerPol,
                                             y0 = c(4, 2),tlim = c(0, 100),
                                             parameters = 3)
```
phasePlaneAnalysis *Phase plane analysis*

Description

Allows the user to perform a basic phase plane analysis and produce a simple plot without the need to use the other functions directly. Specifically, a range of options are provided and the user inputs a value to the console to decide what is added to the plot.

Usage

```
phasePlaneAnalysis(
  deriv,
 xlim,
  ylim,
  tend = 100,
 parameters = NULL,
  system = "two.dim",
  add = FALSE,state.names = if (system == "two.dim") c("x", "y") else "y"
)
```


Details

The user designates the derivative file and other arguments as per the above. Then the following ten options are available for execution:

- 1. Flow field: Plots the flow field of the system. See [flowField](#page-24-1).
- 2. Nullclines: Plots the nullclines of the system. See [nullclines](#page-33-1).
- 3. Find fixed point (click on plot): Searches for an equilibrium point of the system, taking the starting point of the search as where the user clicks on the plot. See [findEquilibrium](#page-22-1).
- 4. Start forward trajectory (click on plot): Plots a trajectory, i.e., a solution, forward in time with the starting point taken as where the user clicks on the plot. See [trajectory](#page-47-1).
- 5. Start backward trajectory (click on plot): Plots a trajectory, i.e., a solution, backward in time with the starting point taken as where the user clicks on the plot. See [trajectory](#page-47-1).
- 6. Extend Current trajectory (a trajectory must already be plotted): Extends already plotted trajectories further on in time. See [trajectory](#page-47-1).
- 7. Local stable/unstable manifolds of a saddle (two-dimensional systems only) (click on plot): Plots the stable and unstable manifolds of a saddle point. The user clicks on the plot and an equilibrium point is identified see (3) above, if this point is a saddle then the manifolds are plotted. See [drawManifolds](#page-4-1).
- 8. Grid of trajectories: Plots a set of trajectories, with the starting points defined on an equally spaced grid over the designated plotting range for the dependent variable(s). See [trajectory](#page-47-1).
- 9. Exit: Exits the current call to phasePlaneAnalysis().
- 10. Save plot as PDF: Saves the produced plot as "phasePlaneAnalysis.pdf" in the current working directory.

Author(s)

Michael J Grayling, Stephen P Ellner, John M Guckenheimer

Description

For a one-dimensional autonomous ODE, it plots the phase portrait, i.e., the derivative against the dependent variable. In addition, along the dependent variable axis it plots arrows pointing in the direction of dependent variable change with increasing value of the independent variable. From this stability of equilibrium points (i.e., locations where the horizontal axis is crossed) can be determined.

Usage

```
phasePortrait(
 deriv,
 ylim,
 ystep = 0.01,parameters = NULL,
 points = 10,
  frac = 0.75,
  arrow. head = 0.075,col = "black",add.grid = TRUE,state.names = "y",xlab = state.names,
 ylab = paste0("d", state.names),
  ...
\mathcal{L}
```


Value

Returns a list with the following components:

Author(s)

Michael J Grayling

See Also

[arrows](#page-0-0), [plot](#page-0-0)

simplePendulum 43

Examples

```
# A one-dimensional autonomous ODE system, example2.
example2_phasePortrait <- phasePortrait(example2,
                                      ylim = c(-0.5, 2.5),points = 10,
                                       frac = 0.5)
```
simplePendulum *The simple pendulum model*

Description

The derivative function of the simple pendulum model, an example of a two-dimensional autonomous ODE system.

Usage

simplePendulum(t, y, parameters)

Arguments

Details

simplePendulum evaluates the derivative of the following ODE at the point (t, x, y) :

$$
\frac{dx}{dt} = y, \frac{dy}{dt} = \frac{-g\sin(x)}{l}.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Examples

```
# Plot the velocity field, nullclines and several trajectories
simplePendulum_flowField <- flowField(simplePendulum,
                                    xlim = c(-7, 7),ylim = c(-7, 7),
                                    parameters = 5,
                                    points = 19,
                                    add = FALSE)y0 <- matrix(c(0, 1, 0, 4, -6,
                                   1, 5, 0.5, 0, -3), 5, 2,
                                 byrow = TRUE)
simplePendulum_nullclines <- nullclines(simplePendulum,
                                     xlim = c(-7, 7),ylim = c(-7, 7),
                                     parameters = 5,
                                     points = 500simplePendulum_trajectory <- trajectory(simplePendulum,
                                     y@ = y@,
                                     tlim = c(0, 10),
                                     parameters = 5)
# Determine the stability of two equilibrium points
simplePendulum_stability_1 <- stability(simplePendulum,
                                    ystar = c(\emptyset, \emptyset),
                                    parameters = 5)
simplePendulum_stability_2 <- stability(simplePendulum,
                                    ystar = c(pi, 0),parameters = 5)
```
SIR *The SIR epidemic model*

Description

The derivative function of the SIR epidemic model, an example of a two-dimensional autonomous ODE system.

Usage

SIR(t, y, parameters)

stability and the stability of the state of the state

Details

SIR evaluates the derivative of the following ODE at the point (t, x, y) :

$$
\frac{dx}{dt} = -\beta xy, \frac{dy}{dt} = \beta xy - \nu y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

stability *Stability analysis*

Description

Uses stability analysis to classify equilibrium points. Uses the Taylor Series approach (also known as perturbation analysis) to classify equilibrium points of a one -imensional autonomous ODE system, or the Jacobian approach to classify equilibrium points of a two-dimensional autonomous ODE system. In addition, it can be used to return the Jacobian at any point of a two-dimensional system.

Usage

```
stability(
 deriv,
 ystar = NULL,
 parameters = NULL,
 system = "two.dim",
 h = 1e-07,
 summary = TRUE,
  state.names = if (system == "two.dim") c("x", "y") else "y"
)
```
Arguments

Value

Returns a [list](#page-0-0) with the following components (the exact make up is dependent upon the value of system):

toggle to the control of th

Author(s)

Michael J Grayling

Examples

```
# Determine the stability of the equilibrium points of the one-dimensional
# autonomous ODE system example2
example2_stability_1 <- stability(example2, ystar = 0, system = "one.dim")
example2_stability_2 <- stability(example2, ystar = 1, system = "one.dim")
example2_stability_3 <- stability(example2, ystar = 2, system = "one.dim")
# Determine the stability of the equilibrium points of the two-dimensional
# autonomous ODE system example11
example11_stability_1 <- stability(example11, ystar = c(0, 0))
example11_stability_2 <- stability(example11, ystar = c(0, 2))
example11_stability_3 <- stability(example11, ystar = c(1, 1))
example11_stability_4 <- stability(example11, ystar = c(3, 0))
```
toggle *The genetic toggle switch model*

Description

The derivative function of a simple genetic toggle switch model, an example of a two-dimensional autonomous ODE system.

Usage

toggle(t, y, parameters)

Arguments

Details

toggle evaluates the derivative of the following ODE at the point (t, x, y) :

$$
\frac{dx}{dt} = -x + \alpha(1 + y^{\beta}), \frac{dy}{dt} = -y + \alpha(1 + x^{\gamma}).
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

trajectory *Phase plane trajectory plotting*

Description

Performs numerical integration of the chosen ODE system, for a user specified set of initial conditions. Plots the resulting solution(s) in the phase plane.

Usage

```
trajectory(
  deriv,
 y@ = NULL,n = NULL,tlim,
  tstep = 0.01,
  parameters = NULL,
  system = "two.dim",
  col = "black",
  add = TRUE,state.names = if (system == "two.dim") c("x", "y") else "y",
 method = "ode45",
  ...
\mathcal{L}
```


Value

Returns a list with the following components (the exact make up is dependent on the value of system):

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0), [plot](#page-0-0)

Examples

```
# Plot the flow field, nullclines and several trajectories for the
# one-dimensional autonomous ODE system logistic
logistic_flowField <- flowField(logistic,
                             xlim = c(0, 5),
                             ylim = c(-1, 3),parameters = c(1, 2),
                             points = 21,
                             system = "one.dim",
                             add = FALSE)logistic_nullclines <- nullclines(logistic,
                              xlim = c(0, 5),
                              ylim = c(-1, 3),parameters = c(1, 2),
                              system = "one.dim")
logistic_trajectory <- trajectory(logistic,
                              y0 = c(-0.5, 0.5, 1.5, 2.5),tlim = c(0, 5),
                              parameters = c(1, 2),
                              system = "one.dim")
# Plot the velocity field, nullclines and several trajectories for the
# two-dimensional autonomous ODE system simplePendulum
simplePendulum_flowField <- flowField(simplePendulum,
                                  xlim = c(-7, 7),
                                  ylim = c(-7, 7),
                                  parameters = 5,
                                  points = 19,
                                  add = FALSE)y0 <- matrix(c(0, 1, 0, 4, -6, 1, 5, 0.5, 0, -3),
                                5, 2, byrow = TRUE)
```
vanDerPol 51

```
simplePendulum_nullclines <- nullclines(simplePendulum,
                                  xlim = c(-7, 7),ylim = c(-7, 7),
                                  parameters = 5,
                                  points = 500simplePendulum_trajectory <- trajectory(simplePendulum,
                                  y@ = y@,
                                  tlim = c(0, 10),
                                  parameters = 5)
```
vanDerPol *The Van der Pol oscillator*

Description

The derivative function of the Van der Pol Oscillator, an example of a two-dimensional autonomous ODE system.

Usage

vanDerPol(t, y, parameters)

Arguments

Details

vanDerPol evaluates the derivative of the following ODE at the point (t, x, y) :

$$
\frac{dx}{dt} = y, \frac{dy}{dt} = \mu(1 - x^2)y - x.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Examples

```
# Plot the velocity field, nullclines and several trajectories.
vanDerPol_flowField <- flowField(vanDerPol,
                                   xlim = c(-5, 5),ylim = c(-5, 5),
                                    parameters = 3,
                                   points = 15,
                                    add = FALSE)y0 <- matrix(c(2, 0, 0, 2, 0.5, 0.5), 3, 2,
                                 byrow = TRUE)
vanDerPol_nullclines <- nullclines(vanDerPol,
                                    xlim = c(-5, 5),ylim = c(-5, 5),parameters = 3,
                                    points = 500vanDerPol_trajectory <- trajectory(vanDerPol,
                                    y@ = y@,
                                    tlim = c(0, 10),
                                    parameters = 3)
# Plot x and y against t
vanDerPol_numericalSolution <- numericalSolution(vanDerPol,
                                          y0 = c(4, 2),
                                          tlim = c(0, 100),
                                          parameters = 3)
# Determine the stability of the equilibrium point
vanDerPol_stability <- stability(vanDerPol,
                                   ystar = c(\emptyset, \emptyset),
                                    parameters = 3)
```
vonBertalanffy *The von Bertalanffy growth model*

Description

The derivative function of the von Bertalanffy growth model, an example of a one-dimensional autonomous ODE system.

Usage

```
vonBertalanffy(t, y, parameters)
```


vonBertalanffy 53

Arguments

Details

vonBertalanffy evaluates the derivative of the following ODE at the point (t, y) :

$$
\frac{dy}{dt} = \alpha y^{2/3} - \beta y.
$$

Its format is designed to be compatible with [ode](#page-0-0) from the [deSolve](#page-0-0) package.

Value

Returns a [list](#page-0-0) containing the values of the two derivatives at (t, x, y) .

Author(s)

Michael J Grayling

See Also

[ode](#page-0-0)

Index

.paramDummy, [4](#page-3-0) arrows, *[26,](#page-25-0) [27](#page-26-0)*, *[42](#page-41-0)* character, *[6](#page-5-0)*, *[26,](#page-25-0) [27](#page-26-0)*, *[35](#page-34-0)*, *[38](#page-37-0)*, *[42](#page-41-0)*, *[49](#page-48-0)* competition, [4](#page-3-0) contour, *[35,](#page-34-0) [36](#page-35-0)* deSolve, *[3](#page-2-0)*, *[5](#page-4-0)*, *[7](#page-6-0)[–10](#page-9-0)*, *[12–](#page-11-0)[17](#page-16-0)*, *[19–](#page-18-0)[21](#page-20-0)*, *[23](#page-22-0)*, *[29–](#page-28-0)[33](#page-32-0)*, *[37](#page-36-0)*, *[43](#page-42-0)*, *[45](#page-44-0)*, *[47](#page-46-0)*, *[51](#page-50-0)*, *[53](#page-52-0)* drawManifolds, *[3](#page-2-0)*, [5,](#page-4-0) *[40](#page-39-0)* example1, [7](#page-6-0) example10, [8](#page-7-0) example11, [9](#page-8-0) example12, [10](#page-9-0) example13, [11](#page-10-0) example14, [12](#page-11-0) example15, [13](#page-12-0) example2, [14](#page-13-0) example3, [15](#page-14-0) example4, [16](#page-15-0) example5, [17](#page-16-0) example6, [18](#page-17-0) example7, [19](#page-18-0) example8, [20](#page-19-0) example9, [21](#page-20-0) exponential, [22](#page-21-0) findEquilibrium, *[3](#page-2-0)*, [23,](#page-22-0) *[40](#page-39-0)* flowField, *[3](#page-2-0)*, [25,](#page-24-0) *[40](#page-39-0)* legend, *[35](#page-34-0)*, *[38](#page-37-0)* length, *[4](#page-3-0)*, *[6](#page-5-0)[–17](#page-16-0)*, *[19](#page-18-0)[–22](#page-21-0)*, *[24](#page-23-0)*, *[26,](#page-25-0) [27](#page-26-0)*, *[29–](#page-28-0)[35](#page-34-0)*, *[37](#page-36-0)[–39](#page-38-0)*, *[41](#page-40-0)[–44](#page-43-0)*, *[46–](#page-45-0)[49](#page-48-0)*, *[51](#page-50-0)*, *[53](#page-52-0)* lindemannMechanism, [28](#page-27-0) list, *[5](#page-4-0)[–10](#page-9-0)*, *[12](#page-11-0)[–14](#page-13-0)*, *[16](#page-15-0)*, *[18–](#page-17-0)[21](#page-20-0)*, *[23](#page-22-0)*, *[27](#page-26-0)*, *[29–](#page-28-0)[33](#page-32-0)*, *[35](#page-34-0)*, *[38](#page-37-0)*, *[43](#page-42-0)*, *[45,](#page-44-0) [46](#page-45-0)*, *[48](#page-47-0)*, *[51](#page-50-0)*, *[53](#page-52-0)* locator, *[6](#page-5-0)*, *[24](#page-23-0)*, *[46](#page-45-0)*, *[49](#page-48-0)* logistic, [29](#page-28-0) lotkaVolterra, [31](#page-30-0)

```
matrix, 6, 27, 35, 48, 50
monomolecular, 32
morrisLecar, 33
NULL, 6, 24, 46, 49
nullclines, 3, 34, 40
numeric, 4, 6–17, 19–22, 24, 26, 27, 29–35,
         37–44, 46–51, 53
numericalSolution, 3, 37
ode, 3–24, 26, 29–35, 37–43, 45–53
phasePlaneAnalysis, 3, 39
phasePortrait, 3, 41
phaseR (phaseR-package), 3
phaseR-package, 3
plot, 26, 27, 35, 36, 38, 42, 50
simplePendulum, 43
SIR, 44
stability, 3, 45
toggle, 47
trajectory, 3, 40, 48
vanDerPol, 51
vector, 4, 6–17, 19–22, 24, 26, 27, 29–35,
         37–44, 46–49, 51, 53
vonBertalanffy, 52
```