Package: phaseR (via r-universe)

August 23, 2024

Type Package

Title Phase Plane Analysis of One- And Two-Dimensional Autonomous ODE
Systems

Version 2.2.1
Imports deSolve, graphics, grDevices, utils

Description Performs a qualitative analysis of one- and
two-dimensional autonomous ordinary differential equation
systems, using phase plane methods. Programs are available to
identify and classify equilibrium points, plot the direction
field, and plot trajectories for multiple initial conditions.

In the one-dimensional case, a program is also available to
plot the phase portrait. Whilst in the two-dimensional case,
programs are additionally available to plot nullclines and
stable/unstable manifolds of saddle points. Many example
systems are provided for the user. For further details can be
found in Grayling (2014) <doi:10.32614/RJ-2014-023>.

License MIT + file LICENSE
Suggests knitr, rmarkdown, testthat
Date 2022-08-30

URL https://github.com/mjg211/phaseR

BugReports https://github.com/mjg211/phaseR/issues
RoxygenNote 7.1.2

Encoding UTF-8

VignetteBuilder knitr

Repository https://mjg211.r-universe.dev

RemoteUrl https://github.com/mjg211/phaser

RemoteRef HEAD

RemoteSha bc6af8c7a7ebe8d6c1683c40a3b79d1£1066c4a4

https://doi.org/10.32614/RJ-2014-023
https://github.com/mjg211/phaseR
https://github.com/mjg211/phaseR/issues

2 Contents

Contents
phaseR-package L e 3
paramDummy ... L L e 4
COMPELItION o ottt e e e e e 4
drawManifolds 5
examplel L e 7
examplelO L 8
examplel]l L 9
examplel2 L e e e 10
examplel3 11
exampleld L 12
examplelS 13
example2 e e 14
example3 15
exampled 16
exampleS e 17
exampled L. e e 18
example7 e 19
example8 20
exampled e e 21
exponential L Lo e 22
findEquilibrium 23
flowField e 25
lindemannMechanism oL o 28
logistic 29
lotkaVolterra L 31
monomolecularo 32
morrisLecar L 33
nullclines 34
numericalSolution 37
phasePlaneAnalysis L e 39
phasePortrait e 41
simplePendulum 43
SIR . 44
stability e e 45
toggle e 47
trajectory e e e e 48
vanDerPol 51
vonBertalanffy o 52

Index 54

phaseR-package 3

phaseR-package Phase plane analysis of one- and two-dimensional autonomous ODE

systems

Description

phaseR is an R package for the qualitative analysis of one- and two-dimensional autonomous
ODE systems, using phase plane methods. Programs are available to identify and classify equi-
librium points, plot the direction field, and plot trajectories for multiple initial conditions. In the
one-dimensional case, a program is also available to plot the phase portrait. Whilst in the two-
dimensional case, additionally programs are available to plot nullclines and stable/unstable mani-
folds of saddle points. Many example systems are provided for the user.

Details

Package: phaseR
Type: Package
Version: 2.1
Date: 2019-31-05
License: GNU GPLv3

The package contains nine main functions for performing phase plane analyses:

drawManifolds: Draws the stable and unstable manifolds of a saddle point in a two dimen-
sional autonomous ODE system.

findEquilibrium: Identifies a nearby equilibrium point of an autonomous ODE system
based on a specified starting point.

flowField: Plots the flow or velocity field of a one- or two-dimensional autonomous ODE
system.

nullclines: Plots the nullclines of a two-dimensional autonomous ODE system.

numericalSolution: Numerically solves a two-dimensional autonomous ODE system in
order to plot the two dependent variables against the independent variable.

phasePlaneAnalysis: Provides a simple means of performing a phase plane analysis by
typing only numbers in to the command line.

phasePortrait: Plots the phase portrait of a one-dimensional autonomous ODE system, for
use in classifying equilibria.
stability: Performs stability, or perturbation, analysis in order to classify equilibria.

trajectory: Numerically solves a one- or two-dimensional ODE system to plot trajectories
in the phase plane.

In addition, the package contains over 25 derivative functions for example systems. Links to these
can be found in the package index.

An accompanying vignette containing further information, examples, and exercises, can also be
accessed with vignette("introduction”, package = "phaseR").

This package makes use of the ode function in the package deSolve.

4 competition

Author(s)

Michael J Grayling (michael.grayling@ncl.ac.uk)
Contributors: Gerhard Burger, Tomas Capretto, Stepehn P Ellner, John M Guckenheimer

. paramDummy A function such that we can apply DRY in param documentation

Description

A function such that we can apply DRY in param documentation

Usage

.paramDummy (state.names)

Arguments
state.names The state names for ode functions that do not use positional states.
competition The species competition model
Description

The derivative function of the species competition model, an example of a two-dimensional au-
tonomous ODE system.

Usage

competition(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of z and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length one.
parameters The values of the parameters of the system. Should be a numeric vector with

parameters specified in the following order: 71, K1, a2, 72, Ko, aa1.

drawManifolds 5

Details

competition evaluates the derivative of the following coupled ODE system at the point (¢, z, y):

dx dy

44*=7ux(KH-—m-—a1ﬂU/KH7E;

7 =roy(Ky —y — aniz)/Ks.

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, x, y).

Author(s)

Michael J Grayling

See Also

ode

drawManifolds Stable and unstable manifolds

Description

Plots the stable and unstable manifolds of a saddle point. A search procedure is utilised to identify
an equilibrium point, and if it is a saddle then its manifolds are added to the plot.

Usage

drawManifolds(
deriv,
yo = NULL,
parameters = NULL,
tstep = 0.1,
tend = 100,
col = c("green”, "red"),
add.legend = TRUE,
state.names = c("x", "y"),
method = "lsoda",

Arguments

deriv

yo

parameters

tstep

tend
col

add.legend
state.names
method

Value

drawManifolds

A function computing the derivative at a point for the ODE system to be anal-
ysed. Discussion of the required structure of these functions can be found in the
package vignette, or in the help file for the function ode.

The initial point from which a saddle will be searched for. This can either be
a numeric vector of length two, reflecting the location of the two dependent
variables, or alternatively this can be specified as NULL, and then locator can
be used to specify the initial point on a plot. Defaults to NULL.

Parameters of the ODE system, to be passed to deriv. Supplied as a numeric
vector; the order of the parameters can be found from the deriv file. Defaults
to NULL.

The step length of the independent variable, used in numerical integration. De-
creasing the absolute magnitude of tstep theoretically makes the numerical
integration more accurate, but increases computation time. Defaults to @.01.

The final time of the numerical integration performed to identify the manifolds.

Sets the colours used for the stable and unstable manifolds. Should be a character

vector of length two. Will be reset accordingly if it is of the wrong length.
Defaults to c("green”, "red").

Logical. If TRUE, a legend is added to the plots. Defaults to TRUE.
The state names for ode functions that do not use positional states.
Passed to ode. See there for further details. Defaults to "1soda”.

Additional arguments to be passed to plot.

Returns a 1ist with the following components:

add.legend
col

deriv
method
parameters
stable.1

stable.?2

tend
unstable.1

unstable.?2

yo
ystar

As per input.

As per input, but with possible editing if a character vector of the wrong
length was supplied.

As per input.

As per input.

As per input.

A numeric matrix whose columns are the numerically computed values of the
dependent variables for part of the stable manifold.

A numeric matrix whose columns are the numerically computed values of the
dependent variables for part of the stable manifold.

As per input.

A numeric matrix whose columns are the numerically computed values of the
dependent variables for part of the unstable manifold.

A numeric matrix whose columns are the numerically computed values of the
dependent variables for part of the unstable manifold.

As per input.

Location of the identified equilibrium point.

examplel

Author(s)

Michael J Grayling, Stephen P Ellner, John M Guckenheimer

examplel Example ODE system 1

Description

The derivative function of an example one-dimensional autonomous ODE system.

Usage

examplel(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The value of y, the dependent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
parameters The values of the parameters of the system. Not used here.
Details

examplel evaluates the derivative of the following ODE at the point (¢, y):

dy _

=4 — >
dt Y

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the value of the derivative at (¢, y).

Author(s)

Michael J Grayling

See Also

ode

8 examplel0

examplel@ Example ODE system 10

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

examplel@(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example10 evaluates the derivatives of the following coupled ODE system at the point (¢, z, y):

dx 5 dy
- =— - = 2.
dt xﬂc’dt Y

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z, y).

Author(s)

Michael J Grayling

See Also

ode

examplel | 9

examplel1l Example ODE system 11

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

examplel1(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example11 evaluates the derivatives of the following coupled ODE system at the point (¢, z, y):

dx dy

2 rB—z—2y). 2 = —y2—x—7).
7 r(3—=x y)vdt y2—-2z—y)

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z,y).

Author(s)
Michael J Grayling

See Also

ode

Examples

Plot the velocity field, nullclines and several trajectories
examplel1_flowField <- flowField(examplell,

xlim = c(-5, 5),

ylim = c(-5, 5),

points = 21,

add FALSE)

10 examplel?2

yo <- matrix(c(4, 4, -1, -1,
-2, 1,1, -1, 4, 2,
byrow = TRUE)

examplel1_nullclines <- nullclines(examplell,

xlim = c(-5, 5),

ylim = c(-5, 5),

points = 200)
examplell1_trajectory <- trajectory(examplell,

ye = yo,

tlim = c(@, 10))
Determine the stability of the equilibrium points
examplell_stability_1 <- stability(examplell, ystar = c(@, 0))
examplel1_stability_2 <- stability(examplell, ystar = c(@, 2))
examplel1_stability_3 <- stability(examplell, ystar = c(1, 1))
examplel1_stability_4 <- stability(examplell, ystar = c(3, 0))

examplel12 Example ODE system 12

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

examplel12(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
a numeric vector of length one.
y The values of = and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example12 evaluates the derivatives of the following coupled ODE system at the point (¢, z, y):

dx dy 9 9
—=r—-y,— = — 2.
a TV Y
Its format is designed to be compatible with ode from the deSolve package.
Value

Returns a 1ist containing the values of the two derivatives at (¢, z, y).

examplel3 11

Author(s)

Michael J Grayling

See Also

ode

Examples

Plot the velocity field, nullclines and several trajectories
examplel12_flowField <- flowField(examplel2,

xlim = c(-4, 4),

ylim = c(-4, 4),

points = 17,
add = FALSE)
yo <- matrix(c(2, 2, -3, O,

0, 2, 0, -3), 4, 2,
byrow = TRUE)
examplel12_nullclines <- nullclines(examplel2,
xlim = c(-4, 4),
ylim = c(-4, 4),
points = 200)
examplel12_trajectory <- trajectory(examplel2,
yo =yo,
tlim = c(0, 10))
Determine the stability of the equilibrium points
examplel12_stability_1 <- stability(examplel2,
ystar = c(1, 1))
examplel12_stability_2 <- stability(examplel2,
ystar = c(-1, -1))

examplel3 Example ODE system 13

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

examplel13(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
a numeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.

Should be a numeric vector of length two.

parameters The values of the parameters of the system. Not used here.

12 examplel4
Details
example13 evaluates the derivatives of the following coupled ODE system at the point (¢, z, y):

dr _
dt

dy

a4 _ 22
aw -~ C Y

2— 1’2 - y27
Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z,y).

Author(s)

Michael J Grayling

See Also

ode

examplel4 Example ODE system 14

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

examplel4(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example14 evaluates the derivatives of the following coupled ODE system at the point (¢, z, y):

dz 9
e R)
at Y

dy

i —322 + 2.

Its format is designed to be compatible with ode from the deSolve package.

examplel5 13

Value

Returns a 1ist containing the values of the two derivatives at (¢, x, y).

Author(s)

Michael J Grayling

See Also

ode

examplel5 Example ODE system 15

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

examplel15(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of = and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example15 evaluates the derivatives of the following coupled ODE system at the point (¢, z, y):

d d
d—f:x2—3xy+2x,d—z;:x+y—l.

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z, y).

Author(s)

Michael J Grayling

See Also

ode

14 example?2

example2 Example ODE system 2

Description

The derivative function of an example one-dimensional autonomous ODE system.

Usage

example2(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The value of y, the dependent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
parameters The values of the parameters of the system. Not used here.
Details

example?2 evaluates the derivative of the following ODE at the point (¢, y):

dy _

i y(1—=y)(2—y).

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the value of the derivative at (¢, y).

Author(s)
Michael J Grayling
See Also
ode
Examples
Plot the flow field and several trajectories
example2_flowField <- flowField(example2,
xlim = c(o, 4),
ylim = c(-1, 3),
system = "one.dim",

add = FALSE,

example3 15

xlab = "t")
example2_trajectory <- trajectory(example2,

yo = c(-0.5, 0.5, 1.5, 2.5),

tlim = c(o, 4),

system = "one.dim")

Plot the phase portrait
example2_phasePortrait <- phasePortrait(example2,
ylim = c(-0.5, 2.5),
frac = 0.5)
Determine the stability of the equilibrium points
example2_stability_1 <- stability(example2,
ystar = 0,
system = "one.dim")
example2_stability_2 <- stability(example2,
ystar =1,
system = "one.dim")
example2_stability_3 <- stability(example2,
ystar = 2,
system = "one.dim")

example3 Example ODE system 3

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example3(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example3 evaluates the derivatives of the following coupled ODE system at the point (¢, x, y):

dzr @_

@w__ — 4z,
a - Ut .

Its format is designed to be compatible with ode from the deSolve package.

16

example4
Value
Returns a 1ist containing the values of the two derivatives at (¢, z, y).
Author(s)
Michael J Grayling
See Also
ode
example4 Example ODE system 4
Description
The derivative function of an example two-dimensional autonomous ODE system.
Usage
example4(t, y, parameters)
Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example4 evaluates the derivatives of the following coupled ODE system at the point (¢, x, y):

dr @_

@w__ = da.
a - Tar T

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z,y).

Author(s)

Michael J Grayling

example5 17

See Also

ode

Examples

Plot the velocity field, nullclines and several trajectories
example4_flowField <- flowField(example4,

xlim = c(-3, 3),

ylim = c(-5, 5),

points = 19,

add = FALSE)
yo <- matrix(c(1, o, -1, 0, 2, 2,

-2, 2, -3, -4), 5, 2,
byrow = TRUE)
example4_nullclines <- nullclines(example4,
xlim = c(-3, 3),
ylim = c(-5, 5))
example4_trajectory <- trajectory(example4,
ye = yo,
tlim = ¢(0,10))

exampleb Example ODE system 5

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example5(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of = and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example5 evaluates the derivatives of the following coupled ODE system at the point (¢, x, y):

dx dy
@@ _, L —
7 Al T

Its format is designed to be compatible with ode from the deSolve package.

18 example6

Value

Returns a 1ist containing the values of the two derivatives at (¢, x, y).

Author(s)

Michael J Grayling

See Also

ode

Examples

Plot the velocity field, nullclines, manifolds and several trajectories

example5_flowField <- flowField(example5,
xlim = c(-3, 3),
ylim = c(-3, 3),
points = 19,
add = FALSE)
yo <- matrix(c(1, o, -1, 0, 2, 2,

-2, 2,0, 3, 0, -3), 6, 2,
byrow = TRUE)
example5_nullclines <- nullclines(example5,
xlim = c(-3, 3),
ylim = c(-3, 3))
example5_trajectory <- trajectory(example5,
ye = ye,
tlim = ¢(0,10))
Plot x and y against t
example5_numericalSolution <- numericalSolution(example5,
yo = c(o, 3),
tlim = c(0, 3))
Determine the stability of the equilibrium point
example5_stability <- stability(example5,
ystar = c(0, 0))

example6 Example ODE System 6

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example6(t, y, parameters)

example7 19

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of = and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example6 evaluates the derivatives of the following coupled ODE system at the point (¢, x, y):

dy
— = 2y, — = —2 .
7t x + y’dt r+y

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, x, y).

Author(s)
Michael J Grayling

See Also

ode

example?7 Example ODE system 7

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

example7(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of = and y, the dependent variables, to evaluate the derivative at.

Should be a numeric vector of length two.

parameters The values of the parameters of the system. Not used here.

20 example8

Details

example7 evaluates the derivatives of the following coupled ODE system at the point (¢, x, y):

dx dy
—=—x—y — =4 .
dt TV T+Y

Its format is designed to be compatible with ode from the deSolve package.
Value
Returns a 1ist containing the values of the two derivatives at (¢, z,y).

Author(s)

Michael J Grayling

See Also

ode

example8 Example ODE system 8

Description
The derivative function of an example two-dimensional autonomous ODE system.

Usage

example8(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example8 evaluates the derivatives of the following coupled ODE system at the point (¢, x, y):

de _ dy _
a LT Y.

Its format is designed to be compatible with ode from the deSolve package.

example9 21

Value

Returns a 1ist containing the values of the two derivatives at (¢, z, y).

Author(s)

Michael J Grayling

See Also

ode

example9 Example ODE system 9

Description

The derivative function of an example two-dimensional autonomous ODE system.

Usage

exampled(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Not used here.
Details

example9 evaluates the derivatives of the following coupled ODE system at the point (¢, x, y):

dx dy
—_ = _2 —_ = .
7 z + 3y, : Tz + 6y

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z, y).

Author(s)

Michael J Grayling

22 exponential

See Also

ode

Examples

Plot the velocity field, nullclines and several trajectories
example9_flowField <- flowField(example9,
xlim = c(-3, 3),

ylim = c(-3, 3),

points = 19,

add = FALSE)
yo <- matrix(c(1, 0, -3, 2,

2, =2, -2, -2), 4, 2,
byrow = TRUE)
example9_nullclines <- nullclines(example9,
xlim = c(-3, 3),
ylim = c(-3, 3))
example9_trajectory <- trajectory(example9,
yo = ye,
tlim = c(@, 10))
Determine the stability of the equilibrium point
example9_stability <- stability(example9,
ystar = c(0, 0))

exponential The exponential growth model

Description
The derivative function of the exponential growth model, an example of a one- dimensional au-
tonomous ODE system.

Usage

exponential(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The value of y, the dependent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
parameters The values of the parameters of the system. Should be a numeric vector pre-

scribing the value of .

findEquilibrium

Details

exponential evaluates the derivative of the following ODE at the point (¢, y):

dy
E = By.

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the value of the derivative at (¢, y).

Author(s)

Michael J Grayling

See Also

ode

23

findEquilibrium Equilibrium point identification

Description

Searches for an equilibium point of a system, taking the starting point of the search as a user
specified location. On identifying such a point, a classification is performed, and an informatively

shaped point can be added to the plot.

Usage

findEquilibrium(
deriv,
y@ = NULL,
parameters = NULL,
system = "two.dim",
tol = le-16,
max.iter = 50,
h = 1e-06,
plot.it = FALSE,
summary = TRUE,
state.names = if (system == "two.dim") c("x", "y") else "y"

24

Arguments

deriv

yo

parameters

system

tol

max.iter

h
plot.it

summary

state.names

Value

findEquilibrium

A function computing the derivative at a point for the ODE system to be anal-
ysed. Discussion of the required structure of these functions can be found in the
package vignette, or in the help file for the function ode.

The starting point of the search. In the case of a one-dimensional system, this
should be a numeric vector of length one indicating the location of the depen-
dent variable initially. In the case of a two-dimensional system, this should be
a numeric vector of length two reflecting the location of the two dependent
variables initially. Alternatively this can be specified as NULL, and then locator
can be used to specify the initial point on a plot. Defaults to NULL.

Parameters of the ODE system, to be passed to deriv. Supplied as a numeric
vector; the order of the parameters can be found from the deriv file. Defaults
to NULL.

Set to either "one.dim” or "two.dim" to indicate the type of system being anal-
ysed. Defaults to "two.dim".

The tolerance for the convergence of the search algorithm. Defaults to 1e-16.

The maximum allowed number of iterations of the search algorithm. Defaults
to 50.

Step length used to approximate the derivative(s). Defaults to 1e-6.

Logical. If TRUE, a point is plotted at the identified equilibrium point, with shape
corresponding to its classification.

Set to either TRUE or FALSE to determine whether a summary of the progress of
the search procedure is returned. Defaults to TRUE.

The state names for ode functions that do not use positional states.

Returns a list with the following components (the exact make up is dependent on the value of

system):

classification The classification of the identified equilibrium point.

Delta

deriv

discriminant

eigenvalues

eigenvectors

jacobian
h

In the two-dimensional system case, value of the Jacobian’s determinant at the
equilibrium point.

As per input.

In the one-dimensional system case, the value of the discriminant used in per-
turbation analysis to assess stability. In the two-dimensional system case, the
value of tr*2 - 4%xDelta.

In the two-dimensional system case, the value of the Jacobian’s eigenvalues at
the equilibrium point.

In the two-dimensional system case, the value of the Jacobian’s eigenvectors at
the equilibrium point.

In the two-dimensional system case, the Jacobian at the equilibrium point.

As per input.

flowField 25

max.iter As per input.
parameters As per input.
plot.it As per input.
summary As per input.
system As per input.
tr In the two-dimensional system case, the value of the Jacobian’s trace at the

equilibrium point.

tol As per input.

yo As per input.

ystar The location of the identified equilibrium point.
Author(s)

Michael J Grayling, Stephen P Ellner, John M Guckenheimer

flowField Flow field

Description

Plots the flow or velocity field for a one- or two-dimensional autonomous ODE system.

Usage

flowField(
deriv,
xlim,
ylim,
parameters = NULL,
system = "two.dim",
points = 21,
col = "gray”,
arrow.type = "equal”,
arrow.head = 0.05,
frac = 1,
add = TRUE,
state.names = if (system == "two.dim”) c("x", "y") else "y",
xlab = if (system == "two.dim") state.names[1] else "t",
ylab = if (system == "two.dim") state.names[2] else state.names[1],

Arguments

deriv

x1lim

ylim

parameters

system

points

col

arrow. type

arrow. head

frac

add

state.names
xlab
ylab

flowField

A function computing the derivative at a point for the ODE system to be anal-
ysed. Discussion of the required format of these functions can be found in the
package vignette, or in the help file for the function ode.

In the case of a two-dimensional system, this sets the limits of the first dependent
variable in which gradient reflecting line segments should be plotted. In the case
of a one-dimensional system, this sets the limits of the independent variable in
which these line segments should be plotted. Should be a numeric vector of
length two.

In the case of a two-dimensional system this sets the limits of the second depen-
dent variable in which gradient reflecting line segments should be plotted. In the
case of a one-dimensional system, this sets the limits of the dependent variable
in which these line segments should be plotted. Should be a numeric vector of
length two.

Parameters of the ODE system, to be passed to deriv. Supplied as a numeric
vector; the order of the parameters can be found from the deriv file. Defaults
to NULL.

Set to either "one.dim" or "two.dim" to indicate the type of system being anal-
ysed. Defaults to "two.dim".

Sets the density of the line segments to be plotted; points segments will be
plotted in the x and y directions. Fine tuning here, by shifting points up and
down, allows for the creation of more aesthetically pleasing plots. Defaults to
11.

Sets the colour of the plotted line segments. Should be a character vector of
length one. Will be reset accordingly if it is of the wrong length. Defaults to
"gray".

Sets the type of line segments plotted. If set to "proportional” the length of
the line segments reflects the magnitude of the derivative. If set to "equal” the
line segments take equal lengths, simply reflecting the gradient of the deriva-
tive(s). Defaults to "equal”.

Sets the length of the arrow heads. Passed to arrows. Defaults to @.05.

Sets the fraction of the theoretical maximum length line segments can take with-
out overlapping, that they can actually attain. In practice, frac can be set to
greater than 1 without line segments overlapping. Fine tuning here assists the
creation of aesthetically pleasing plots. Defaults to 1.

Logical. If TRUE, the flow field is added to an existing plot. If FALSE, a new plot
is created. Defaults to TRUE.

The state names for ode functions that do not use positional states.
Label for the x-axis of the resulting plot.
Label for the y-axis of the resulting plot.

Additional arguments to be passed to either plot or arrows.

flowField

Value

27

Returns a list with the following components (the exact make up is dependent on the value of

system):

add
arrow. head
arrow. type

col

deriv

dx

dy

frac
parameters
points
system

X

xlab

x1lim

ylab
ylim

Author(s)

Michael J Grayling

See Also

arrows, plot

As per input.
As per input.
As per input.

As per input, but with possible editing if a character vector of the wrong
length was supplied.

As per input.

A numeric matrix. In the case of a two-dimensional system, the values of the
derivative of the first dependent derivative at all evaluated points.

A numeric matrix. In the case of a two-dimensional system, the values of the
derivative of the second dependent variable at all evaluated points. In the case of
a one-dimensional system, the values of the derivative of the dependent variable
at all evaluated points.

As per input.
As per input.
As per input.
As per input.

A numeric vector. In the case of a two-dimensional system, the values of the
first dependent variable at which the derivatives were computed. In the case of
a one-dimensional system, the values of the independent variable at which the
derivatives were computed.

As per input.

As per input.

A numeric vector. In the case of a two-dimensional system, the values of the
second dependent variable at which the derivatives were computed. In the case
of a one-dimensional system, the values of the dependent variable at which the
derivatives were computed.

As per input.

As per input.

28 lindemannMechanism
Examples

Plot the flow field, nullclines and several trajectories for the
one-dimensional autonomous ODE system logistic
logistic_flowField <- flowField(logistic,

x1lim = c(0, 5),

ylim = c(-1, 3),

parameters = c(1, 2),

points = 21,

system = "one.dim",

add = FALSE)
logistic_nullclines <- nullclines(logistic,

x1im = c(0, 5),

ylim = c(-1, 3),

parameters = c(1, 2),

system = "one.dim")
logistic_trajectory <- trajectory(logistic,

) = ¢(-0.5, 0.5, 1.5, 2.5),

tlim = c(9, 5),

parameters = c(1, 2),

system = "one.dim")

Plot the velocity field, nullclines and several trajectories for the
two-dimensional autonomous ODE system simplePendulum

simplePendulum_flowField <- flowField(simplePendu
xlim
ylim
parameters
points
add

yo <- matrix(c(o, 1, 0, 4,

5, 2, byrow =

lu

-6, 1, 5, 0.5, 0,

TR

m,

c(-7, 7,
c(-7, 1),
5,

19,
FALSE)

UE)

simplePendulum_nullclines <- nullclines(simplePendulum,

x1im

ylim
parameters
points

c(-7, 1),
c(-7, 7),
5,

500)

simplePendulum_trajectory <- trajectory(simplePendulum,

_3) ’

yo = yo,

tlim = c(0, 10),

parameters = 5)
lindemannMechanism The Lindemann mechanism

Description

The derivative function of the non-dimensional version of the Lindemann mechanism, an example

of a two-dimensional autonomous ODE system.

logistic 29

Usage

lindemannMechanism(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Should be a numeric vector pre-
scribing the value of a.
Details

lindemannMechanism evaluates the derivative of the following ODE at the point (¢, z, y):

d d
d—f:—xQ—&—aa:y,d—Z::xQ—amy—y.

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z,y).

Author(s)

Michael J Grayling

See Also

ode

logistic The logistic growth model

Description
The derivative function of the logistic growth model, an example of a two-dimensional autonomous
ODE system.

Usage

logistic(t, y, parameters)

30

Arguments

t

parameters

Details

logistic

The value of ¢, the independent variable, to evaluate the derivative at. Should be
a numeric vector of length one.

The value of y, the dependent variable, to evaluate the derivative at. Should be
anumeric vector of length one.

The values of the parameters of the system. Should be a numeric vector with
parameters specified in the following order: 3, K.

logistic evaluates the derivative of the following ODE at the point (¢, y):

dy

& — By(L - y/K).

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the value of the derivative at (¢, y).

Author(s)

Michael J Grayling

See Also

ode

Examples

Plot the velocity field, nullclines and several trajectories

logistic_flowField <- flowField(logistic,
x1lim = c(0, 5),
ylim = c(-1, 3),
parameters = c(1, 2),
points = 21,
system = "one.dim",
add = FALSE)
logistic_nullclines <- nullclines(logistic,
x1im = c(0, 5),
ylim = c(-1, 3),
parameters = c(1, 2),
system = "one.dim")
logistic_trajectory <- trajectory(logistic,
yo = ¢(-0.5, 9.5, 1.5, 2.5),
tlim = c(0, 5),
parameters = c(1, 2),
system = "one.dim")

Plot the phase portrait

lotkaVolterra 31

logistic_phasePortrait <- phasePortrait(logistic,

ylim = c(-0.5, 2.5),
parameters = c(1, 2),
points =10,
frac =0.5)
Determine the stability of the equilibrium points
logistic_stability_1 <- stability(logistic,
ystar =0,
parameters = c(1, 2),
system = "one.dim")
logistic_stability_2 <- stability(logistic,
ystar =2,
parameters = c(1, 2),
system = "one.dim")
lotkaVolterra The Lotka-Volterra model

Description
The derivative function of the Lotka-Volterra model, an example of a two-dimensional autonomous
ODE system.

Usage

lotkaVolterra(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
a numeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Should be a numeric vector with
parameters specified in the following order: A, €, 7, 9.
Details

lotkaVolterra evaluates the derivative of the following ODE at the point (¢, x, y):

dx dy

E:)\x—exy,aznxy—dy.

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z,y).

32 monomolecular

Author(s)

Michael J Grayling

See Also

ode

monomolecular The monomolecular growth model

Description
The derivative function of the monomolecular growth model, an example of a one-dimensional
autonomous ODE system.

Usage

monomolecular(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The value of y, the dependent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
parameters The values of the parameters of the system. Should be a numeric vector with
parameters specified in the following order: 3, K.
Details

monomolecular evaluates the derivative of the following ODE at the point (¢, y):

dy
at = B(K —y).

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the value of the derivative at (¢, y).

Author(s)

Michael J Grayling

See Also

ode

morrisLecar 33

morrislLecar The Morris-Lecar model

Description

The derivative function of the Morris-Lecar model, an example of a two-dimensional autonomous
ODE system.

Usage

morrisLecar(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Should be a numeric vector with
parameters specified in the following order: gca, ¢.
Details

morrisLecar evaluates the derivative of the following ODE at the point (¢, z, y):

d
d—f = 0.05(90 — 0.5gca(1 + tanh(z + 1.2)/18))(z — 120) — 8y(z + 84) — 2(z + 60),

dy r—2\| z—-2
= = 0(05 {1+tanh (30)} y)cosh(—=).

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z,y).

Author(s)
Michael J Grayling

See Also

ode

34

nullclines

nullclines

Nullclines

Description

Plots nullclines for two-dimensional autonomous ODE systems. Can also be used to plot horizontal
lines at equilibrium points for one-dimensional autonomous ODE systems.

Usage

nullclines(

deriv,

xlim,

ylim,
parameters =
system = "two
points = 101,
col = c("blue
add = TRUE,
add.legend =
state.names =

Arguments

deriv

xlim

ylim

parameters

system

NULL,
.dim”,

n’ ”Cyan”) ,

TRUE,
if (system == "two.dim") c("x", "y") else "y",

A function computing the derivative at a point for the ODE system to be anal-
ysed. Discussion of the required structure of these functions can be found in the
package vignette, or in the help file for the function ode.

In the case of a two-dimensional system, this sets the limits of the first dependent
variable in which gradient reflecting line segments should be plotted. In the case
of a one-dimensional system, this sets the limits of the independent variable in
which these line segments should be plotted. Should be a numeric vector of
length two.

In the case of a two-dimensional system this sets the limits of the second depen-
dent variable in which gradient reflecting line segments should be plotted. In the
case of a one-dimensional system, this sets the limits of the dependent variable
in which these line segments should be plotted. Should be a numeric vector of
length two.

Parameters of the ODE system, to be passed to deriv. Supplied as a numeric
vector; the order of the parameters can be found from the deriv file. Defaults
to NULL.

Set to either "one.dim” or "two.dim" to indicate the type of system being anal-
ysed. Defaults to "two.dim".

nullclines

points

col

add

add.legend

state.names

Value

35

Sets the density at which derivatives are computed; points x points deriva-
tives will be computed. Levels of zero gradient are identified using these com-
putations and the function contour. Increasing the value of points improves
identification of nullclines, but increases computation time. Defaults to 101.

In the case of a two-dimensional system, sets the colours used for the x- and
y-nullclines. In the case of a one-dimensional system, sets the colour of the
lines plotted horizontally along the equilibria. Should be a character vector
of length two. Will be reset accordingly if it is of the wrong length. Defaults
to c("blue”, "cyan").

Logical. If TRUE, the nullclines are added to an existing plot. If FALSE, a new
plot is created. Defaults to TRUE.

Logical. If TRUE, a legend is added to the plots. Defaults to TRUE.
The state names for ode functions that do not use positional states.

Additional arguments to be passed to either plot or contour.

Returns a 1list with the following components (the exact make up is dependent on the value of

system):

add
add.legend

col

deriv
dx

dy

parameters
points
system

X

x1lim

ylim

As per input.

As per input.

As per input, but with possible editing if a character vector of the wrong
length was supplied.

As per input.

A numeric matrix. In the case of a two-dimensional system, the values of the
derivative of the first dependent derivative at all evaluated points.

A numeric matrix. In the case of a two-dimensional system, the values of the
derivative of the second dependent variable at all evaluated points. In the case of
a one-dimensional system, the values of the derivative of the dependent variable
at all evaluated points.

As per input.
As per input.
As per input.

A numeric vector. In the case of a two-dimensional system, the values of the
first dependent variable at which the derivatives were computed. In the case of
a one-dimensional system, the values of the independent variable at which the
derivatives were computed.

As per input.

A numeric vector. In the case of a two-dimensional system, the of values of
the second dependent variable at which the derivatives were computed. In the
case of a one-dimensional system, the values of the dependent variable at which
the derivatives were computed.

As per input.

36

Note

nullclines

In order to ensure a nullcline is plotted, set x1im and ylim strictly enclosing its location. For

example, to ensure a nullcline is plotted along x =0, set ylimto, e.g., begin at -1.

Author(s)

Michael J Grayling

See Also

contour, plot

Examples

Plot the flow field, nullclines and several
one-dimensional autonomous ODE system logist
logistic_flowField <- flowField(logistic,
xlim =
ylim =
parameters =
points =
system =
add =
logistic_nullclines <- nullclines(logistic,

x1im =
ylim =
parameters =
system =

logistic_trajectory <- trajectory(logistic,

yo =
tlim =
parameters =
system =

Plot the velocity field, nullclines and seve

two-dimensional autonomous ODE system simple

simplePendulum_flowField <- flowField(simpleP
x1lim
ylim
paramet
points
add

yo <- matrix(c(o, 1, 0,

trajectories for the
ic.

c(o, 5),
c(-1, 3),
c(1, 2),
21,
"one.dim",
FALSE)

c(o, 5),
c(-1, 3),
c(1, 2),
"one.dim")

c(-0.5, 0.5, 1.5, 2.5),

c(e, 5),
c(1, 2),
"one.dim")

ral trajectories for the
Pendulum.
endulum,
=c(-7, 1),
=c(-7, 7),
ers = 5,
=19,
= FALSE)
4, -6, 1, 5, 0.5, 0, -3),

5, 2, byrow = TRUE)

simplePendulum_nullclines <- nullclines(simple
x1im
ylim
parame
points

simplePendulum_trajectory <- trajectory(simple

Pendulum,
=c(-7, 7),
=c(-7, 1),

ters = 5,
= 500)

Pendulum,

numericalSolution 37

yo = yo,
tlim c(o, 10),
parameters = 5)

numericalSolution Numerical solution and plotting

Description

Numerically solves a two-dimensional autonomous ODE system for a given initial condition, us-
ing ode from the package deSolve. It then plots the dependent variables against the independent

variable.
Usage

numericalSolution(
deriv,
y@ = NULL,
tlim,
tstep = 0.01,
parameters = NULL,
type = "one",

col = c("red”, "blue"),
add.grid = TRUE,
add.legend = TRUE,
state.names = c("x", "y"),
xlab = "t",

ylab = state.names,

method = "ode45",

)
Arguments

deriv A function computing the derivative at a point for the ODE system to be anal-
ysed. Discussion of the required structure of these functions can be found in the
package vignette, or in the help file for the function ode.

yo The initial condition. Should be a numeric vector of length two reflecting the
location of the two dependent variables initially.

tlim Sets the limits of the independent variable for which the solution should be plot-
ted. Should be a numeric vector of length two. If t1im[2] > t1im[1], then
tstep should be negative to indicate a backwards trajectory.

tstep The step length of the independent variable, used in numerical integration. De-

creasing the absolute magnitude of tstep theoretically makes the numerical
integration more accurate, but increases computation time. Defaults to 0. 01.

38

parameters

type

col

add.grid
add.legend
state.names
xlab

ylab

method

Value

numericalSolution

Parameters of the ODE system, to be passed to deriv. Supplied as a numeric
vector; the order of the parameters can be found from the deriv file. Defaults
to NULL.

If set to "one" the trajectories are plotted on the same graph. If set to "two"
they are plotted on separate graphs. Defaults to "one”.

Sets the colours of the trajectories of the two dependent variables. Should be
a character vector of length two. Will be reset accordingly if it is of the
wrong length. Defaults to c("red”, "blue").

Logical. If TRUE, grids are added to the plots. Defaults to TRUE.
Logical. If TRUE, a 1legend is added to the plots. Defaults to TRUE.
The state names for ode functions that do not use positional states.
Label for the x-axis of the resulting plot.

Label for the y-axis of the resulting plot.

Passed to ode. See there for further details. Defaults to "ode45".
Additional arguments to be passed to plot.

Returns a 1ist with the following components:

add.grid
add.legend

col

deriv
method
parameters
t

tlim
tstep

yo

Author(s)

Michael J Grayling

See Also

ode, plot

As per input.
As per input.

As per input, but with possible editing if a character vector of the wrong
length was supplied.

As per input.
As per input.
As per input.

A numeric vector containing the values of the independent variable at each
integration step.

As per input.
As per input.

A numeric vector containing the numerically computed values of the first de-
pendent variable at each integration step.

A numeric vector containing the numerically computed values of the second
dependent variable at each integration step.

As per input.

phasePlaneAnalysis 39

Examples

A two-dimensional autonomous ODE system, vanDerPol.
vanDerPol_numericalSolution <- numericalSolution(vanDerPol,

yo = c(4, 2),
tlim = c(0, 100),
parameters = 3)

phasePlaneAnalysis Phase plane analysis

Description

Allows the user to perform a basic phase plane analysis and produce a simple plot without the need
to use the other functions directly. Specifically, a range of options are provided and the user inputs
a value to the console to decide what is added to the plot.

Usage
phasePlaneAnalysis(
deriv,
xlim,
ylim,
tend = 100,
parameters = NULL,
system = "two.dim",
add = FALSE,
state.names = if (system == "two.dim") c("x", "y") else "y"
)
Arguments
deriv A function computing the derivative at a point for the ODE system to be anal-
ysed. Discussion of the required structure of these functions can be found in the
package vignette, or in the help file for the function ode.
x1lim In the case of a two-dimensional system, this sets the limits of the first dependent
variable in any subsequent plot. In the case of a one-dimensional system, this
sets the limits of the independent variable. Should be a numeric vector of
length two.
ylim In the case of a two-dimensional system this sets the limits of the second depen-
dent variable in any subsequent plot. In the case of a one-dimensional system,
this sets the limits of the dependent variable. Should be a numeric vector of
length two.
tend The value of the independent variable to end any subsequent numerical integra-

tions at.

40 phasePlaneAnalysis
parameters Parameters of the ODE system, to be passed to deriv. Supplied as a numeric
vector; the order of the parameters can be found from the deriv file. Defaults

to NULL.
system Set to either "one.dim” or "two.dim" to indicate the type of system being anal-

ysed. Defaults to "two.dim".

add Logical. If TRUE, the chosen features are added to an existing plot. If FALSE, a
new plot is created. Defaults to FALSE.
state.names The state names for ode functions that do not use positional states.
Details

The user designates the derivative file and other arguments as per the above. Then the following ten
options are available for execution:

1. Flow field: Plots the flow field of the system. See flowField.
2. Nullclines: Plots the nullclines of the system. See nullclines.

3. Find fixed point (click on plot): Searches for an equilibrium point of the system, taking the
starting point of the search as where the user clicks on the plot. See findEquilibrium.

4. Start forward trajectory (click on plot): Plots a trajectory, i.e., a solution, forward in time
with the starting point taken as where the user clicks on the plot. See trajectory.

5. Start backward trajectory (click on plot): Plots a trajectory, i.e., a solution, backward in
time with the starting point taken as where the user clicks on the plot. See trajectory.

6. Extend Current trajectory (a trajectory must already be plotted): Extends already plotted
trajectories further on in time. See trajectory.

7. Local stable/unstable manifolds of a saddle (two-dimensional systems only) (click on plot):
Plots the stable and unstable manifolds of a saddle point. The user clicks on the plot and an
equilibrium point is identified see (3) above, if this point is a saddle then the manifolds are
plotted. See drawManifolds.

8. Grid of trajectories: Plots a set of trajectories, with the starting points defined on an equally
spaced grid over the designated plotting range for the dependent variable(s). See trajectory.

9. Exit: Exits the current call to phasePlaneAnalysis().

10. Save plot as PDF: Saves the produced plot as "phasePlaneAnalysis.pdf" in the current
working directory.

Author(s)

Michael J Grayling, Stephen P Ellner, John M Guckenheimer

phasePortrait

41

phasePortrait

Phase portrait plot

Description

For a one-dimensional autonomous ODE, it plots the phase portrait, i.e., the derivative against
the dependent variable. In addition, along the dependent variable axis it plots arrows pointing
in the direction of dependent variable change with increasing value of the independent variable.
From this stability of equilibrium points (i.e., locations where the horizontal axis is crossed) can be

determined.
Usage
phasePortrait(
deriv,
ylim,
ystep = 0.01,
parameters = NULL,
points = 10,
frac = 0.75,
arrow.head = 0.075,
col = "black”,
add.grid = TRUE,
state.names = "y",
xlab = state.names,
ylab = paste@("d”, state.names),
)
Arguments
deriv A function computing the derivative at a point for the ODE system to be anal-
ysed. Discussion of the required structure of these functions can be found in the
package vignette, or in the help file for the function ode.
ylim Sets the limits of the dependent variable for which the derivative should be com-
puted and plotted. Should be a numeric vector of length two.
ystep Sets the step length of the dependent variable vector for which derivatives are
computed and plotted. Decreasing ystep makes the resulting plot more accu-
rate, but comes at a small cost to computation time. Defaults to 0.01.
parameters Parameters of the ODE system, to be passed to deriv. Supplied as a numeric
vector; the order of the parameters can be found from the deriv file. Defaults
to NULL.
points Sets the density at which arrows are plotted along the horizontal axis; points

arrows will be plotted. Fine tuning here, by shifting points up and down, allows
for the creation of more aesthetically pleasing plots. Defaults to 10.

42

frac

arrow. head

col

add.grid
state.names
xlab

ylab

Value

phasePortrait

Sets the fraction of the theoretical maximum length line segments can take with-
out overlapping, that they actually attain. Fine tuning here assists the creation of
aesthetically pleasing plots. Defaults to 0. 75.

Sets the length of the arrow heads. Passed to arrows. Defaults to 0. 075.

Sets the colour of the line in the plot, as well as the arrows. Should be a
character vector of length one. Will be reset accordingly if it is of the wrong
length. Defaults to "black”.

Logical. If TRUE, a grid is added to the plot. Defaults to TRUE.

The state names for ode functions that do not use positional states.
Label for the x-axis of the resulting plot.

Label for the y-axis of the resulting plot.

Additional arguments to be passed to either plot or arrows.

Returns a list with the following components:

add.grid As per input.
arrow. head As per input.
col As per input, but with possible editing if a character vector of the wrong
length was supplied.
deriv As per input.
dy A numeric vector containing the value of the derivative at each evaluated point.
frac As per input.
parameters As per input.
points As per input.
xlab As per input.
y A numeric vector containing the values of the dependent variable for which
the derivative was evaluated.
ylab As per input.
ylim As per input.
ystep As per input.
Author(s)
Michael J Grayling
See Also

arrows, plot

simplePendulum 43

Examples

A one-dimensional autonomous ODE system, example2.
example2_phasePortrait <- phasePortrait(example2,
ylim = c(-0.5, 2.5),

points = 10,
frac = 0.5)
simplePendulum The simple pendulum model

Description
The derivative function of the simple pendulum model, an example of a two-dimensional au-
tonomous ODE system.

Usage

simplePendulum(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of z and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Should be a numeric vector pre-
scribing the value of [.
Details

simplePendulum evaluates the derivative of the following ODE at the point (¢, x, y):

dz dy _ —gsin(z)

at Ve T T
Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z, y).

Author(s)
Michael J Grayling

See Also

ode

44 SIR

Examples

Plot the velocity field, nullclines and several trajectories
simplePendulum_flowField <- flowField(simplePendulum,

x1lim =c(-7, 7),

ylim =c(-7, 1),

parameters = 5,

points =19,

add = FALSE)
yo <- matrix(c(o, 1, 0, 4, -6,

1, 5, 0.5, @, -3), 5, 2,
byrow = TRUE)

simplePendulum_nullclines <- nullclines(simplePendulum,

x1lim =c(-7, 7,
ylim =c(-7, 7,
parameters = 5,

points = 500)

simplePendulum_trajectory <- trajectory(simplePendulum,
yo = yo,
tlim c(o, 10),
parameters = 5)
Determine the stability of two equilibrium points
simplePendulum_stability_1 <- stability(simplePendulum,
ystar = c(0, 9,
parameters = 5)
simplePendulum_stability_2 <- stability(simplePendulum,
ystar = c(pi, 0),
parameters = 5)

SIR The SIR epidemic model

Description
The derivative function of the SIR epidemic model, an example of a two-dimensional autonomous
ODE system.

Usage

SIR(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Should be a numeric vector with

parameters specified in the following order: S, v.

stability

Details

SIR evaluates the derivative of the following ODE at the point (¢, x, y):

dx dy
o — By, a Bry — vy.

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z, y).

Author(s)

Michael J Grayling

See Also

ode

45

stability Stability analysis

Description

Uses stability analysis to classify equilibrium points. Uses the Taylor Series approach (also known
as perturbation analysis) to classify equilibrium points of a one -imensional autonomous ODE sys-
tem, or the Jacobian approach to classify equilibrium points of a two-dimensional autonomous ODE
system. In addition, it can be used to return the Jacobian at any point of a two-dimensional system.

Usage

stability(
deriv,
ystar = NULL,
parameters = NULL,
system = "two.dim",
h = 1e-07,
summary = TRUE,
state.names = if (system == "two.dim") c("x", "y") else "y"

Arguments

deriv

ystar

parameters

system

h

summary

state.names

Value

stability

A function computing the derivative at a point for the ODE system to be anal-
ysed. Discussion of the required structure of these functions can be found in the
package vignette, or in the help file for the function ode.

The point at which to perform stability analysis. For a one-dimensional system
this should be a numeric vector of length one, for a two-dimensional system
this should be a numeric vector of length two (i.e., presently only one equi-
librium point’s stability can be evaluated at a time). Alternatively this can be
specified as NULL, and then locator can be used to choose a point to perform
the analysis for. However, given you are unlikely to locate exactly the equilib-
rium point, if possible enter ystar yourself. Defaults to NULL.

Parameters of the ODE system, to be passed to deriv. Supplied as a numeric
vector; the order of the parameters can be found from the deriv file. Defaults
to NULL.

Set to either "one.dim” or "two.dim" to indicate the type of system being anal-
ysed. Defaults to "two.dim".

Step length used to approximate the derivative(s). Defaults to 1e-7.

Set to either TRUE or FALSE to determine whether a summary of the stability
analysis is returned. Defaults to TRUE.

The state names for ode functions that do not use positional states.

Returns a 1ist with the following components (the exact make up is dependent upon the value of

system):

classification The classification of ystar.

Delta

deriv

discriminant

eigenvalues

eigenvectors

jacobian

h
parameters
summary
system

tr

ystar

In the two-dimensional system case, the value of the Jacobian’s determinant at
ystar.

As per input.

In the one-dimensional system case, the value of the discriminant used in per-
turbation analysis to assess stability. In the two-dimensional system case, the
value of tr*2 - 4xDelta.

In the two-dimensional system case, the value of the Jacobian’s eigenvalues at
ystar.

In the two-dimensional system case, the value of the Jacobian’s eigenvectors at
ystar.

In the two-dimensional system case, the Jacobian at ystar.

As per input.

As per input.

As per input.

As per input.

In the two-dimensional system case, the value of the Jacobian’s trace at ystar.

As per input.

toggle 47

Author(s)

Michael J Grayling

Examples

Determine the stability of the equilibrium points of the one-dimensional
autonomous ODE system example2

example2_stability_1 <- stability(example2, ystar = @, system = "one.dim")
example2_stability_2 <- stability(example2, ystar = 1, system = "one.dim")
example2_stability_3 <- stability(example2, ystar = 2, system = "one.dim")

Determine the stability of the equilibrium points of the two-dimensional
autonomous ODE system examplelil

examplel1_stability_1 <- stability(examplell, ystar = c(@, 0))
examplel1_stability 2 <- stability(examplell, ystar = c(@, 2))
examplel1_stability_3 <- stability(examplell, ystar = c(1, 1))
examplel1_stability_4 <- stability(examplell, ystar = c(3, 0))

toggle The genetic toggle switch model

Description

The derivative function of a simple genetic toggle switch model, an example of a two-dimensional
autonomous ODE system.

Usage

toggle(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of = and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Should be a numeric vector with
parameters specified in the following order: «, 3, 7.
Details

toggle evaluates the derivative of the following ODE at the point (¢, z, y):

dx dy
- 1 By 29 _ _ 1 7Y,
7 z+a(l+y)’dt y+a(l+z)

Its format is designed to be compatible with ode from the deSolve package.

48 trajectory

Value

Returns a 1ist containing the values of the two derivatives at (¢, x, y).

Author(s)

Michael J Grayling

See Also

ode

trajectory Phase plane trajectory plotting

Description

Performs numerical integration of the chosen ODE system, for a user specified set of initial condi-
tions. Plots the resulting solution(s) in the phase plane.

Usage

trajectory(
deriv,
y® = NULL,
n = NULL,
tlim,
tstep = 0.01,
parameters = NULL,
system = "two.dim",
col = "black”,
add = TRUE,
state.names = if (system == "two.dim”) c("x", "y") else "y",
method = "ode45",

)
Arguments
deriv A function computing the derivative at a point for the ODE system to be anal-
ysed. Discussion of the required structure of these functions can be found in the
package vignette, or in the help file for the function ode.
yo The initial condition(s). In the case of a one-dimensional system, this can either

be a numeric vector of length one, indicating the location of the dependent
variable initially, or a numeric vector indicating multiple initial locations of the
independent variable. In the case of a two-dimensional system, this can either
be a numeric vector of length two, reflecting the location of the two depen-
dent variables initially, or it can be numeric matrix where each row reflects a

trajectory

tlim

tstep

parameters

system

col

add

state.names
method

Value

49

different initial condition. Alternatively this can be specified as NULL, and then
locator can be used to specify initial condition(s) on a plot. In this case, for
one-dimensional systems, all initial conditions are taken at tlim[1], even if not
selected so on the graph. Defaults to NULL.

If y@ is left NULL, such initial conditions can be specified using locator, n sets
the number of initial conditions to be chosen. Defaults to NULL.

Sets the limits of the independent variable for which the solution should be plot-
ted. Should be a numeric vector of length two. If t1im[2] > t1im[1], then
tstep should be negative to indicate a backwards trajectory.

The step length of the independent variable, used in numerical integration. De-
creasing the absolute magnitude of tstep theoretically makes the numerical
integration more accurate, but increases computation time. Defaults to 0. 01.

Parameters of the ODE system, to be passed to deriv. Supplied as a numeric
vector; the order of the parameters can be found from the deriv file. Defaults
to NULL.

Set to either "one.dim” or "two.dim" to indicate the type of system being anal-
ysed. Defaults to "two.dim".

The colour(s) to plot the trajectories in. Should be a character vector. Will
be reset accordingly if it is not of the length of the number of initial conditions.
Defaults to "black”.

Logical. If TRUE, the trajectories added to an existing plot. If FALSE, a new plot
is created. Defaults to TRUE.

The state names for ode functions that do not use positional states.
Passed to ode. See there for further details. Defaults to "ode45".

Additional arguments to be passed to plot.

Returns a list with the following components (the exact make up is dependent on the value of

system):

add

col

deriv

n

method
parameters
system
tlim

tstep

t

As per input.

As per input, but with possible editing if a character vector of the wrong
length was supplied.

As per input.
As per input.
As per input.
As per input.
As per input.
As per input.
As per input.

A numeric vector containing the values of the independent variable at each
integration step.

50

yo

Author(s)

Michael J Grayling

See Also

ode, plot

Examples

trajectory

In the two-dimensional system case, a numeric matrix whose columns are the
numerically computed values of the first dependent variable for each initial con-
dition.

In the two-dimensional system case, a numeric matrix whose columns are the
numerically computed values of the second dependent variable for each ini-
tial condition. In the one-dimensional system case, a numeric matrix whose
columns are the numerically computed values of the dependent variable for each
initial condition.

As per input, but converted to a numeric matrix if supplied as a vector initially.

Plot the flow field, nullclines and several trajectories for the

one-dimensional

autonomous ODE system logistic

logistic_flowField <- flowField(logistic,

logistic_nullclines <- nullclines(logistic,

logistic_trajectory <- trajectory(logistic,

xlim = c(0, 5),
ylim = c(-1, 3),
parameters = c(1, 2),
points =21,

system = "one.dim",
add = FALSE)

x1lim = c(0, 5),
ylim = c(-1, 3),
parameters = c(1, 2),
system = "one.dim")
yo = c(-0.5, 0.5, 1.5, 2.5),
tlim = c(0, 5),
parameters = c(1, 2),
system = "one.dim")

Plot the velocity field, nullclines and several trajectories for the

two-dimensional

autonomous ODE system simplePendulum

simplePendulum_flowField <- flowField(simplePendulum,

yo

xlim =c(-7, 7),
ylim =c(-7, 7),
parameters = 5,

points =19,

add = FALSE)

<- matrix(c(o, 1, o, 4, -6, 1, 5, 0.5, 0, -3),
5, 2, byrow = TRUE)

vanDerPol 51

simplePendulum_nullclines <- nullclines(simplePendulum,

xLim =c(-7, 1),
ylim =c(-7, 7,
parameters = 5,

points = 500)

simplePendulum_trajectory <- trajectory(simplePendulum,
yo = yo,
tlim c(0, 10),
parameters = 5)

vanDerPol The Van der Pol oscillator

Description
The derivative function of the Van der Pol Oscillator, an example of a two-dimensional autonomous
ODE system.

Usage

vanDerPol(t, y, parameters)

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The values of x and y, the dependent variables, to evaluate the derivative at.
Should be a numeric vector of length two.
parameters The values of the parameters of the system. Should be a numeric vector pre-
scribing the value of p.
Details

vanDerPol evaluates the derivative of the following ODE at the point (¢, x, y):

dx @_

- = = pu(l — 2%y — .
il e p(l—2%)y —x

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, z,y).

Author(s)
Michael J Grayling

52 vonBertalanffy

See Also

ode

Examples

Plot the velocity field, nullclines and several trajectories.

vanDerPol_flowField <- flowField(vanDerPol,
x1lim = c(-5, 5),
ylim = c(-5, 5),
parameters = 3,
points = 15,
add = FALSE)

yo <- matrix(c(2, 0, 0, 2, 0.5, 0.5), 3, 2,

byrow = TRUE)

vanDerPol_nullclines <- nullclines(vanDerPol,
x1lim = c(-5, 5),
ylim = c(-5, 5),
parameters = 3,
points = 500)
vanDerPol_trajectory <- trajectory(vanDerPol,
yo = yeo,
tlim = c(0, 10),

parameters = 3)
Plot x and y against t
vanDerPol_numericalSolution <- numericalSolution(vanDerPol,
yo
tlim
parameters
Determine the stability of the equilibrium point
vanDerPol_stability <- stability(vanDerPol,
ystar = c(0, 9),
parameters = 3)

C(4Y 2)!
c(0, 100),
3)

vonBertalanffy The von Bertalanffy growth model

Description
The derivative function of the von Bertalanffy growth model, an example of a one-dimensional
autonomous ODE system.

Usage

vonBertalanffy(t, y, parameters)

vonBertalanffy 53

Arguments
t The value of ¢, the independent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
y The value of y, the dependent variable, to evaluate the derivative at. Should be
anumeric vector of length one.
parameters The values of the parameters of the system. Should be a numeric vector with
parameters specified in the following order: a, f3.
Details

vonBertalanffy evaluates the derivative of the following ODE at the point (¢, y):

dy _

— o a2/3
priiet’ By.

Its format is designed to be compatible with ode from the deSolve package.

Value

Returns a 1ist containing the values of the two derivatives at (¢, x, y).

Author(s)
Michael J Grayling

See Also

ode

Index

. paramDummy, 4 matrix, 6, 27, 35, 48, 50
monomolecular, 32

arrows, 26, 27,42 morrislLecar, 33

character, 6, 26, 27, 35, 38, 42, 49 NULL, 6, 24, 46, 49

competition, 4 nullclines, 3, 34, 40

contour, 35, 36 numeric, 4, 6-17, 19-22, 24, 26, 27, 29-35,

3744, 46-51, 53

deSolve, 3, 5, 7-10, 12-17, 19-21, 23, 29-33, numericalSolution, 3, 37

37,43,45,47,51, 53

drawManifolds, 3, 5, 40 ode, 3-24, 26, 29-35, 37-43, 45-53
examplel, 7 phasePlaneAnalysis, 3, 39
example1o, 8 phasePortrait, 3, 41
examplel1,9 phaseR (phaseR-package), 3
example12, 10 phaseR-package, 3

example13, 11 plot, 26, 27, 35, 36, 38, 42, 50
examplel4, 12

examplel5, 13 simplePendulum, 43

example2, 14 SIR, 44

example3, 15 stability, 3,45

example4, 16

example5, 17 toggle, 47

example6, 18 trajectory, 3, 40, 48
example7, 19

examples, 20 vanDerPol, 51

exampled, 21 vector, 4, 6-17, 19-22, 24, 26, 27, 29-35,
exponential, 22 37-44,46-49, 51, 53

vonBertalanffy, 52
findEquilibrium, 3, 23, 40
flowField, 3, 25, 40

legend, 35, 38

length, 4, 6-17, 19-22, 24, 26, 27, 29-35,
37-39,41-44,46-49, 51, 53

lindemannMechanism, 28

list, 5-10, 12-14, 16, 18-21, 23,27, 29-33,
35, 38, 43,45, 46,48, 51, 53

locator, 6, 24, 46, 49

logistic, 29

lotkaVolterra, 31

54

	phaseR-package
	.paramDummy
	competition
	drawManifolds
	example1
	example10
	example11
	example12
	example13
	example14
	example15
	example2
	example3
	example4
	example5
	example6
	example7
	example8
	example9
	exponential
	findEquilibrium
	flowField
	lindemannMechanism
	logistic
	lotkaVolterra
	monomolecular
	morrisLecar
	nullclines
	numericalSolution
	phasePlaneAnalysis
	phasePortrait
	simplePendulum
	SIR
	stability
	toggle
	trajectory
	vanDerPol
	vonBertalanffy
	Index

